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A model of a Boolean game with only one free parameter p that denotes the strength of local interaction is
proposed wherein each agent acts according to the information obtained from his neighbors in the network, and
those in the minority are rewarded. The simulation results indicate that the dynamic of the system is sensitive
to network topology, whereby the network of larger degree variance, i.e., the system of greater information
heterogeneity, leads to less system profit. The system can self-organize to a stable state and perform better than
the random choice game, although only the local information is available to the agents. In addition, in hetero-
geneity networks, the agents with more information gain more than those with less information for a wide
extent of interaction strength p.
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I. INTRODUCTION

Complex adaptive systems composed of agents under mu-
tual influence have attracted considerable interest in recent
years. It is not unexpected that the systems with globally
shared information can be organized. A basic question in
studies of complexity is how large systems with only local
information available to the agents may become complex
through a self-organized dynamical process �1�.

The mutual influence can be properly described as the
so-called information network, in which the nodes represent
agents and the directed edge from x to y means the agent y
can obtain information from x. For simplicity, undirected
networks are considered in this paper. In this way, node de-
gree k is proportional to the quantity of information available
to the corresponding agent. The two extensively studied in-
formation networks of ecosystems are regular �2–4� and ran-
dom �1,5� networks, both of which have a characterized
degree—the mean degree �k�. For regular networks, all the
nodes are of degree �k�, and for random ones, the degree
distribution decays quickly in a Poissonian form when k
� �k�. The existence of a characterized degree means every
node has almost the same capacity of information. However,
previous empirical studies have revealed that the information
networks may be of scale-free property �6–8�, in which a
giant heterogeneity of information exists. The nodes of larger
degree contain much more information than those of less
degree, thus, the information heterogeneity can be measured
by the degree variance �k2�. The question is how the topol-
ogy affects the system dynamic: will the greater information
heterogeneity induce more profit for the system, or less?

Another question of concern in this paper is herd behav-
ior, which has been extensively studied in Behavioral Fi-
nance and is usually considered as one factor of the origins
of complexity that may enhance the fluctuation and reduce

the system profit �9–13�. Here we argue that, to measure the
underlying possibility of the occurrence of herd behavior, it
is more proper to look at how much the agents’ actions are
determined by others rather than how much the agents want
to be in majority, since in many real-life cases, the agents
would like to be in minority but the herd behavior still oc-
curs. We wonder whether agents have different responses
under a fixed interaction strength, and whether the varying
trends of system profit and individual profit are the same as
the increase of interaction strength.

In this paper, a model of a Boolean game with only one
free parameter p that denotes the strength of local interaction
is proposed, whereby each agent acts according to the infor-
mation obtained from his neighbors in the network and those
in the minority are rewarded. Although the model may be too
simple and rough, it offers a starting point aiming at the
questions above. We have found that the topology of the
information network affects the system dynamic much and
that the system can self-organize to a stable state with more
profit compared with the random choice game even only the
local information is available.

II. MODEL

The Boolean game, first proposed by Kauffman, is set up
so that each agent has only one binary choice, such as either
buying or selling a stock �14�. The studies of the Boolean
game have attracted not only physicists’ but also ecologists’
and economists’ attention since it could explain much em-
pirical data and might contribute to the understanding of the
underlying mechanisms of the many-body ecosystems, al-
though the dynamic rule is simple �1,5,15�.

Inspired by the idea of the minority game �16�, which is a
simple but rich model describing a population of selfish in-
dividuals fighting for a common resource, we propose the
present Boolean game wherein each agent chooses between
two opposing actions, simplified as +1 and −1, and the
agents in the minority are rewarded. Each winner’s score*Electronic address: bhwang@ustc.edu.cn
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increases by 1, thus the system profit equals to the number of
winners �17–19�. In our model, at each time step, each agent
acts based on his neighbors at probability p, or acts all by
himself at probability 1− p. In the former case, we assume
each neighbor has the same force. Since the arbitrary agent x
would like to be in the minority, he will choose +1 at the
probability s−1

x / �s−1
x +s+1

x �, or choose −1 at the probability
s+1

x / �s−1
x +s+1

x �, where s−1
x and s+1

x denote the number of x’s
neighbors choosing −1 and +1 in the last time step, respec-
tively. In the latter case, since there is no information from
others, the agent simply inherits his action in the last time
step or chooses the opposite action at a small probability m,
named the mutation probability. It is worthwhile to empha-
size that the agents do not know who are winners in the
previous steps since the global information is not available,
which is also one of the main differences from the previous
studies on the minority game.

The real-life ecosystem often seems a black box to us: the
outcome may be observed, but the underlying mechanism is
not visible. If we see many agents display the same action,
we say herd behavior occurs, although those agents might
prefer to be in the minority. From another point of view, if
each agent acts all by himself, there is no preferential choice
for +1 and −1 so that no herd behavior will occur. Therefore,
if herd behavior occurs, the agents’ actions must be at least
partly based on the information obtained from others. In this
paper, the underlying possibility of the occurrence of herd

behavior is measured by how much the agents’ actions are
determined by others, that is to say, by the interaction
strength p.

III. SIMULATIONS

In this paper, all the simulation results are the average of
100 realizations, and for each realization, the time length is
T=104 unless a special statement is addressed. The number
of agents N=1001 and mutation probability m=0.01 are
fixed. Figure 1 shows the variance �2= �1/T��t=1

T �At−N /2�2

as a function of p in star, regular, random, and scale-free
networks, where At is the number of agents who choose +1 at
time step t. Clearly, the smaller �2 corresponds to more sys-
tem profit, and for the completely random choice game, �2

=0.25N. The regular network is a one-dimensional lattice
with periodic boundary conditions and coordination number
z=3 �20�, the random network is the ER network of connect-
ing probability 6�10−3 �21,22�, and the scale-free network
is the BA network of m0=m=3 �23�. Therefore, all the net-
works except the star networks are of average degree �k�
=6. Since the number of edges �k�N /2 is proportional to the
total quantity of information available to agents, the net-
works used for simulating �except star networks� have the
same capacity of information. In the star network, it is not
unexpected that the system profit will be reduced when the
interaction strength increases. More interesting, in each of

FIG. 1. The variance of the number of agents choosing +1 as a function of interaction strength p. The four plots are the cases of star,
regular, random, and scale-free networks. The solid line represents the random choice game, where �2=0.25N. It is clear that the system
profit is more than the random choice game when p� �0,0.7�, p� �0,0.7�, and p� �0,0.4� in regular, random, and scale-free networks,
respectively. For any p� �0,1�, �2 of the four cases satisfies the relations �regular

2 ��random
2 ��scale-free

2 ��star
2 , which means the system profit

S satisfies Sregular�Srandom�Sscale-free�Sstar.
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the latter three cases, the system performs better than the
random choice game when p is in a certain interval, indicat-
ing the self-organized process has taken place within those
networks.

Although having the same capacity of information, the
dynamic of scale-free networks is obviously distinguishable
from that in regular and random networks, indicating that the
topology affects the dynamic behavior a lot. Note that, al-
though the topologies of regular and random networks are
obviously different—they have completely different average
distance and clustering coefficient and so on �24�—the dy-
namic behaviors are almost the same in those two networks.
The common ground is they have almost the same degree
variance �k2�. According to the inequality

�k2�star � �k2�scale-free � �k2�random � �k2�regular

and the simulation results, we suspect that a larger degree
variance, i.e., greater information heterogeneity, will lead to
less system profit.

In Fig. 1, one can see clearly that for all the four cases, the
variance �2 is remarkably greater than the random choice
game at large p. Consider the extreme case p=1. If the
agents choosing +1 and −1 are equally mixed up in the net-
works, and the number of agents choosing +1 at present time
is At, then in the next time step, the expectation of At+1 is
�At+1�=N−At, with departure ��At+1�−N /2�= �At−N /2�. If at
present time At is larger than N /2, then At+1 will be smaller
than N /2 most probably, and the departure from N /2 will not
be reduced in average. Therefore, in the case of p=1, when
the “large event” happens, that is to say, when At is much
larger or much smaller than N /2 at some time t, there will be
a long duration of oscillation after t, in which A skips be-
tween up-side A�N /2 and down-side A�N /2. The oscilla-
tion behavior of A is shown in Fig. 2. At the beginning, a

large event with A0=701 is given, then the large oscillation
goes on about 30 time steps. In p=1 case, if A moves apart
from N /2, the influence �large oscillation behavior� will
stand for long time, leading to very large �2. However, in the
random choice game, whatever At−1, the expectation of At is
always �At�=N /2, and the distribution of At−N /2 obeys a
Gaussian form. That is why systems have poor performance
at large p compared with the random choice game.

In another extreme case p=0, the expectation of At+1 is
�At+1�=At�1−m�+m�1−At�=At+m�1−2At�. Assume At

�N /2, for 0�m�
1
2 , we have At�At+1�N /2. Therefore in

this case, when m close to zero, no oscillation of A will
occur, but A slowly reverts to the equilibrium position A
	N /2 after a large event. One can easily prove that even for
very small m, if the iteration time T is sufficiently long, the
system profit will be equal to random choice game, which
means �2=0.25N. This is strongly supported by the simula-
tion results shown in Fig. 1. The thick �red� curve in Fig. 2 is
an example for the case p=0. At time t=0, a large event
A0=701 occurs, and then the curve At slowly reverts to N /2.
After about 170 time steps, it arrives at the equilibrium po-
sition A	N /2.

The two extreme cases also exhibit a clear pictures as to
why the system profit can be maximized at a special value of
p. The interaction mechanism �with probability p� will bring
oscillation, while the independent mechanism �with probabil-
ity 1− p� will lead to a long reversion process. The former
mechanism makes A skip from one side to another, while the
latter one keeps A’s side. Thus at a proper value of p, the
system can quickly arrive at the equilibrium position A
	N /2 after a large event occurs, which leads to more system
profit. The existence of an optimal p has been demonstrated
in Fig. 1.

Let us now focus on the scale-free case since it may be
closer to reality. Firstly, we assume the agents choosing +1
and −1 are equally mixed up in the network. Since there is
also no degree-degree correlation for BA networks �25�, for
arbitrary agent of degree k �here we do not differentiate be-
tween node and the corresponding agent�, the probability at
which he will choose +1 at time step t+1 is

�1�k,t + 1� = p
�
i=0

k
i

k
Ck

i �1
i �t��1 − �1�t��k−i�

+ �1 − p��1 − �1�t��

= 1 + 2p�1�t� − p − �1�t� ,

where �1�t� denotes the density of agents choosing +1 at time
step t, and Ck

i =k! / �k− i�!i!. Since the probability �1�k , t+1�
is independent of k, there must be no correlation between
agent’s degree and profit. In Fig. 3, we report the agent’s
winning rate versus degree, where the winning rate is de-
noted by the average score �s� for individual during one time
step. p=0.0 and p=1.0 correspond to the completely inde-
pendent and dependent cases, respectively; p=0.03 is the
point where the system performs best, and p=0.4 is another
point where the system profit is equal to the random choice
game. One can see clearly that there exists a positive corre-
lation between the agent’s profit and degree in the cases p

FIG. 2. �Color online� The number of agents choosing +1 vs
time. The simulation takes place on regular networks of size N
=1001. At the beginning, a large event with 701 agents choosing +1
happens. The thick �red� and thin �black� curves show the variety of
At after this large event for the two extreme cases p=0 and p=1,
respectively. Clearly, in the case p=0, At slowly reverts to the equi-
librium position A	N /2; while in the case p=1, the system dis-
plays obvious oscillation behavior. The inset exhibits the oscillation
of At in the case p=1 for the first 30 time steps.
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=0.03 and p=0.4, which means the agents of larger degree
will perform better than those of less degree. Figure 4 shows
the agent’s winning rate as a function of p for different k. It
is clear that for a wide extent of p, the agents having more
information will gain more. Therefore, the assumption is not
true, thus there must be some kind of correlation, which is
another evidence of the existence of a self-organized process.

A natural question is addressed: why the agents of large
degree will gain more than those of less degree? The reason
is the choice of a few hub nodes �i.e., the nodes of very large
degree� can strongly influence many other small nodes’ �i.e.,
the nodes of very small degree� choices in the next time step,
and those hub nodes can profit from this influence. Denote H
the set of those hub nodes and G0�t� the number of hub
nodes choosing +1 at time t. We assume at a certain time step
t, G0�t�� �H� /2, which means the number of hub nodes
choosing +1 is more than half. This departure will make
some nodes connected to those hub nodes, especially the
small nodes, choose −1 in time t+1 with a greater probabil-
ity. Because the majority of these small nodes’ hub neighbors
choose +1 at present, this influence is remarkable and cannot
be neglected since the small nodes have only a few neigh-
bors. The more departure �G0− �H� /2� will lead to the greater
influence.

FIG. 3. The agent’s winning rate vs degree. Each point denotes one agent and the solid line represents the average winning rate over all
the agents. In the cases of p=0.0 and p=1.0, no correlation is detected. In the cases of p=0.03 and p=0.4, the positive correlation between
agent’s profit and degree is observed.

FIG. 4. �Color online� The agent’s winning rate as a function of
interaction strength. The main plot is obtained by the simulation
upon a BA network of size N=1001, in which the black, red, green
and blue curves from top to bottom represent the four agents of
degree 105, 46, 6, and 3, respectively. The inset shows the case
upon a BA network of size N=2001, where the black, red, green,
and blue curves from top to bottom represent the four agents of
degree 137, 77, 13, and 3, respectively. It is observed that the agents
having more information gain more than those with less
information.
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Figure 5 exhibits an example on BA networks of size N
=1001, where H contains only five hub nodes of the highest
degree. In each time step, all the choices of these five nodes
form a choice configuration. There are in total 25=32 differ-
ent configurations, which are classified into six patterns by
identifying the number of agents choosing +1. For example,
G0=2 denotes the pattern in which there are two agents
choosing +1 and other three choosing −1. Under each choice
pattern 0�G0�5, since �G0− �H� /2�= �G0−2.5� is bigger
than zero at all times, the hub node can always gain more
than the small node. Clearly, under the choice pattern with a
larger departure, such as G0=0 or G0=5, the difference of
winning rates between the hub node and the small node un-
der these patterns is much greater than the case of a smaller
departure.

IV. CONCLUSION

In summary, inspired by the minority game, we propose a
model of the Boolean game that can also be considered as a
parsimonious model of the local minority game �26,27�. The
simulation results upon various networks are shown, which
indicate that the dynamic of system is sensitive to the topol-
ogy of the network, whereby the network of larger degree
variance; i.e., the system of greater information heterogene-
ity, leads to less system profit. The system can perform better
than the random choice game. This is reasonable evidence of
the existence of a self-organized process taking place within
the networks, although only local information is available to
agents. We also have found that in heterogeneous networks,
the agents with more information gain more than those with
less information for a wide extent of interaction strength p.
In addition, it is clear that the trends of varying system profit
and individual profit are different as interaction strength in-
creases; for example, in the scale-free network with p=0.5,
the system profit is less than random choice game but the
profit of an agent of large degree is much more than that in
random choice game.

Although this model is rough, it offers a simple and intui-
tive paradigm of many-body systems that can self-organize
even when only local information is available. Since the self-
organized process is considered as one of the key ingredients
of the origins of complexity, it might contribute to the under-
standing of the underlying mechanism of the complex sys-
tems.
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